
1. Introduction
The increasing use of information technology in hospi-
tals and medical facilities of any kind led to an ongoing
demand of exploiting the stored data to gain more
knowledge about diseases, course of diseases, possible
treatments methods etc. Especially critical environ-
ments like ICUs have a high sensibility for this issue.
Here, 8 to 20% of the patients develop a VAP (N.N.,
2005) what leads to mortality rates ranging from 20 to
50% or even 70% (N.N., 2005) (Heyland et al, 1999)
(Tejerina et al, 2006). It is clear that an early and accu-
rate diagnosis of VAP has a high relevance. An accu-
rate diagnosis - and hence a faster recovery - shortens
the patient’s stay at the ICU and reduces both unneces-
sary stress for the patient and avoidable costs for the
hospital (Oroszi, 2008). Besides this, physicians are
overwhelmed by the massive amount of data recorded
every day. Therefore new methods of utilization are
needed. Data mining methods offer possibilities to
transform pure and raw data into knowledge and can
lead to a progress in treating methods. 

This work is part of an interdisciplinary project be-
tween researchers from the department of information
systems of Friedrich-Schiller University (FSU), Jena,
an intensive care unit (ICU) and the hospital pharmacy
of the same institution (Oroszi, 2008). The project,
which followed the standard process model for data
mining (CRISP-DM)(Chapman et al, 2000) has the aim
to apply data mining techniques to the ICU database.
In this paper, we will concentrate on time series pro-
cessing, which is one important research scope of the
overall project. The data we analyze are time series of
an aggregated score value which have been generated

during an early phase of the project (Oroszi, 2008). The
particular goal of this work and other investigations
within the project is to identify promising appendages
for pneumonia prediction for further research. A cru-
cial question regarding the project is: Are there differ-
ences between the pre-onset course of disease of pa-
tients with and without pneumonia? Furthermore the
question arises, that if there are differences, are they
trivial like ”If the measured value reaches a certain
point, the next day a pneumonia disease will be mani-
fested” or if the course of disease contains more com-
plex patterns to disclose? So if these patterns exist, da-
ta mining methods may be able to utilize them for an
early warning system. A treating physician faces vari-
ous types of data and information input to develop his
diagnosis. With the increasing availability of computer
generated and digitally stored data, treating physicians
need tools to process this input in an effective and effi-
cient way. An early warning system has to deliver reli-
able and intelligible information to support physicians
in their daily work to ensure the best possible diagnosis
through a diagnosis support system. 

The paper is structured as follows:
In Section 2 we will give an overview of the given data
and its structure. In Section 3 the theory and function-
ality of Hidden Markov Models is briefly illustrated. A
simulation in Section 4 demonstrates the ability of the
system to mirror a patient’s stay at the ICU. Afterwards
Section 5 illuminates our test arrangement to show how
the components interact with each other. To complete
the work we present the results of our investigations
and highlight some perspectives for future research.
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2. Data 

All data was collected during an early phase of the proj-
ect in the years 2004 and 2005 and was already pre-
processed. The whole dataset exceeded more than
4,000 variables. Unfortunately there exists no single
clinical manifestation to diagnose VAP, but several
methods with diverging performance (Rea-Neto et al,

2008). We concentrated on time series of the clinical
pulmonary infection score (CPIS) which have been cal-
culated for every patient during the years 2004 and
2005. CPIS is a score value which was developed to ease
the diagnosis of pneumonia and was first proposed by
Pugin et al. in 1991. Although CPIS has some limita-
tions regarding its moderate performance, it is a helpful
tool in diagnosing VAP (Rea-Neto et al, 2008).

Input Feature Score Point   
 0 1 2 
Tracheal Secretions Rare Abundant Purulent 
Radiographic 
infiltrates 

Absent Patchy or diffuse Localized 

Fever (°C) ≥ 36.5 and  ≤ 38.4 > 38.4 and  ≤ 38.9 > 38.9 or  < 36 
Leukocytosis ≥ 4,000 and ≤ 11,000 < 4,000 or > 11,000 (> 4,000 or < 11,000) 

and ≥  500 band 
forms 

Oxygenation 
(PaO2/FIO2) 

> 240 or accurate  
respiratory distress  
syndrome (ARDS) 

 ≤ 240 and no ARDS 

Microbiology Negative  positive 

As shown in Table 1 the CPIS is an integer score con-
taining 6 score components (tracheal secretions, radi-
ographic infiltrates, fever, leukocytosis, oxygenation,
and semi-quantitive cultures of tracheal aspirates - mi-
crobiology) (Pugin et al, 1991). Every component adds
an integer value between 0 and 2. Hence the CPIS has
a maximum value of 12 - if all features add the value 2
- and a minimum of 0. According to international prac-
tice we consider pneumonia diagnosed, if the CPIS
reaches the value ≥ 6 (Rea-Neto et al, 2008). The first
day of pneumonia is in the following named “reaction
day”. Based on that convention, two groups of cases
could be identified, cases with and without pneumonia.
We will use this information later to evaluate our mod-
el. A first data overview showed a disadvantageous dis-
tribution especially in the group of cases with pneumo-
nia. In this group we could extract 325 CPIS time series
for the years 2004 and 2005. Due to the fact that the
majority of the measured values occurred within a pe-
riod after the reaction day was reached, only 79 time se-
ries with altogether 425 single CPIS values could be
considered for processing in this group. According to
our goal to analyze the pre-onset phase of pneumonia,
data within this early period of the disease’s course is
essential. In the group of cases without pneumonia suf-
ficient data was available. For instance, 147 cases with
altogether 995 single CPIS values for the year 2004 and
138 cases with altogether 827 single CPIS values for the
year 2005 could be extracted. Furthermore various

time series contained gaps and were extremely sparse
as many stays on the ICU were very short. Moreover
the data was highly unbalanced as the group of non-
pneumonic cases is extremely overrepresented. On top
of that, the duration before a reaction day is reached
was concentrated in the range of very short lengths in
the group of pneumonic cases. Due to these limitations,
there are methods required which can process this kind
of data.

3. Hidden Markov models 

The approach to investigate a possible forecast of
pneumonia - based on CPIS time series - uses largely
the functionality of the Hidden Markov Model
(HMM). As many other methods have difficulties in
processing time series of arbitrary and different length,
HMM offer possibilities to process time series with a
challenging characteristic. HMMs have been success-
fully used in data mining for many decades in speech
recognition (Rabiner, 1989)(Manning and Schütze,
2005) as well as many other subjects, for instance bioin-
formatics (Gascuel and Moret, 2001) (Bystroff and
Krogh, 2008). The mathematical description of HMM
will largely follow Rabiner and Juang, 1986. The sto-
chastic model of HMM is characterized by the combi-
nation of two random processes. An origin process with
N different states X = ÌX1, .., XNÍ is non-visible (”hid-
den”). This process can’t be measured, but there exist
M observable emissions Y = Ìy1, .., yMÍ which offer in-

Table 1: CPIS Input Valuation



formation about the origin process. A patient’s health
state can be clearly understood as a random process.
Within this process the patient’s health state changes
from time to time. Usually the health state is verbally
described as ”good”, ”bad” or ”stable” etc. So obviously
this process is hard to operationalize and hard to meas-
ure directly. Every treating physician uses symptoms
and other available information to make a diagnosis
about the patient’s physical constitution. Now we make
the assumption that the state of health can be repre-
sented by the hidden state of a HMM.

In a typical environment HMMs are used to classify
temporal signals like continuous speech or gene se-
quences. Normally a signal is divided into blocks
(frames) in a preprocessing step. In our case, one CPIS
value represents one block. Due to the limitation that a
CPIS measurement is only possible once a day, the
frame rate is one day.1 Hence a whole CPIS time series
can be interpreted as emission symbols and represent
the measurable symptoms. These time series allow esti-
mations about the - hidden - origin process and further-
more the state of health. Picture 1 shows the structure
of the HMM used to represent the course of disease. In
this test arrangement, we assumed four origin states
named: ”green (X1)” for a stable state of health, ”yellow
(X2)” for an unstable state of health, ”orange (X3)” for
a dangerous condition of the patient and ”red (X4)” for
manifested. Three states (excluding ”red”) were consid-
ered the minimum necessary to model a disease devel-
opment. The random variable x(t) is the hidden state at
time t(x(t) ∈ ÌX1, X2, X3, X4Í). Each state X1,…, X4
has a transition distribution represented by the solid
arks in Picture 1. The transition distributions of every
state build the N × N transition matrix aij which is un-
known until the model has been trained. Here aij is the
probability of transitioning from state i to state j in the
next step. Moreover the random variable y(t) is the
emission at a time t(y(t) ∈ Ìy1, y2, y3, y4, y5, y6Í). Every
state has a probability distribution over the possible
emissions y1 to y6. The output probabilities - represent-
ed by the dotted lines in Picture 1 - build the N × M
emission matrix , which defines the probability of every
output token according to the actual hidden state of the
model. So bi(k) is the probability of observing the token
yk when the process is in state i. Furthermore a N-di-
mensional vector π ∈ Ìπ1, .., πN Í with initial probabili-
ties for every state is given. Hence a HMM can be re-
ferred by λ , where λ = (X, Y, a, b, π).

Picture 1: Structural graph of the HMM

Regarding our assumptions in Section 2 we defined a
CPIS of ≥ 6 equal condition ”red”. Furthermore we al-
lowed no transitions from state ”green” to state ”red”
and set all transition probabilities of state ”red” to 0, ex-
cept the transition to itself. The initial probability for
state ”red” was set to 0. Other assumptions or restric-
tions have not been made. According our research in-
terest, four problems/issues regarding HMM arise:

1. Given a set of CPIS observations O with se-
quences o1,.., oL and a HMM λ, how to adjust the
model parameters a, b and π to maximize P(O|λ)
(We will from now on call this issue training). We
will use the Baum-Welch algorithm (Baum et al,
1970) to solve this problem.

2. The most likely CPIS emission sequence, begin-
ning at any point in time. We will use the forward-
backward algorithm (Rabiner, 1989) to solve this
problem and use this information to forecast the
course of disease and predict the outbreak of
pneumonia. 

3. The most likely hidden state at a certain point in
time and therefore also for a future emission. This
problem is solved by using the viterbi
algorithm.(Forney, 1973)(Rabiner, 1989) Thus we
can gain more information about the course of a
pneumonia disease.

4. The likelihood of a given CPIS sequence using the
forward-backward algorithm which will be used to
classify sequences. A description of this set of well
known algorithms is given in Rabiner, 1989. 

4. CPIS simulation

If proved that the stochastic properties of CPIS time se-
ries are represented correctly by the trained HMM, it
would be possible to immediately start the forecast and
count the correct predictions. To get an idea how accu-
rate HMMs can model the development of pneumonia
we assume that only if the model is able to simulate a

57
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CPIS course, it can later predict that course properly.
Therefore we trained a HMM as introduced in Picture
1 with a training set of cases with pneumonia. Picture 2
shows the average course of pneumonic patients and
the average course of multiple simulations. The simula-
tion for a particular sequence started with a first ran-
dom emission and was stopped if a CPIS ≥ 6 was ob-
served. In consideration of the fact that the generated
sequences have different lengths, all sequences were
aligned around the reaction day. Compared to the real
time series the simulated sequences achieved a percent-
age deviation of 6.95% of average CPIS. This result
makes clear, that the model is suited to adapt the sto-
chastic properties of the given time series.

5. Test arrangement

The test arrangement shall adapt and simulate the
course of pneumonia and deliver the likelihood of pneu-
monia in the future. If this functionality is achieved, the
system could be transformed into an early warning or
”traffic light” system. According to that, the model could
offer a decision support system for the treating physi-
cian to strengthen his diagnosis. The test arrangement is
supposed to forecast a manifested pneumonia - condi-
tion ”red” - exactly one day before reaction day. For all
other points in time the forecast shall be a state of
”green”, ”yellow” or ”orange”. The architecture of the
model is guided by medical evidence that patients show-
ing high pneumonia predisposition will contract and de-
velop the disease much faster than average (Oroszi,
2008). The model mirrors this concept by implementing
the stacking paradigm as shown in Picture 3. Two mod-
ules operate in series: one separating high- and low-risk
patients (classification), the other doing the actual fore-
cast for each of the two groups (prediction). The theo-
retical foundations of stacking have been outlined in rel-
evant literature (Wolpert, 1992). Stacking is a method of
using multiple serial or parallel models to achieve

greater predictive accuracy (Ting and Witten, 1997).
The design of the susceptibility prediction model was
guided by the following requirements:

–  Supervised learning should be used. This requires
the concept of susceptibility to be broken down to
observable quantities. As a first approximation,
we used the ultimate outbreak of pneumonia ac-
cording to the CPIS as a class variable. As an ex-
tension one might use a hidden variable that aris-
es from Structural Equation Modeling (SEM) (see
for example Buncher et al, 1991).

–  The model should make probabilistic predictions
with parameters that allow for easy adjustment of

its α and β errors. It is the interaction
in the different parts of the model that
will eventually determine the system’s
performance.
–  The model must handle highly un-

balanced learning samples, as the
high susceptibility group is much
smaller than the group of low sus-
ceptibility patients.

Classification The developed model is
a combination of Hidden Markov
Modeling and Bayesian reasoning. In
the classification part, showed in
Picture 3, two HMMs are derived, one
for high risk patients (HR-patients -

λHR) and one for the rest (LR-patients- λLR). In a Baum-
Welch training each model adapted the characteristics of
cases with pneumonia (λHR), respectively the cases with-
out pneumonia (λLR). In both cases, the time series used
for calibration will exclude the reaction day. Moreover
the HMMs of the classification and the prediction mod-
el slightly differ in the number of states according to the
fact that a condition ”red” does not exist in a pre-onset
phase for the classification model. To classify a patient’s
time series o, it will be fed into both calibrated HMMs,
and the forward-backward algorithm will give the prob-
ability of this sequence occurring under the λHR and λLR-
Model (P(o|λLR) and P(o|λHR) respectively). Bayes’ for-
mula will yield P(HR|o):

(1)

PLR and PHR are the usual a priori probabilities taken
from general health statistics at the ICU. To get a valid
result, the structure (X, Y, N, M) of both HMMs λHR

and λLR has to be equal. Additionally a threshold level

Picture 2: Simulated vs. Real Time Series
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or Certainty Factor CF1 is introduced (see Picture 3). A
HR classification thus is accepted, if the likelihood of (P
(o|λLR) reaches a certain level. This offers the ability to
set a minimum lower bound for accepting a HR classi-
fication. Focusing on HR cases in this work, the deci-
sion rule (which in turn will influence the α and β errors
of this stage) is to label a case HR, if its a posteriori
probability P(HR|o) exceeds a threshold CF1. Cases
classified as HR will pass through the classifier. Strictly
speaking, an analogue predictor/processor is needed for
the LR cases as well. Due to substantially lower risk of
developing pneumonia in this branch, we have not de-
veloped this model yet. At this point the benefits of the
stacking paradigm become once more obvious, as every
sequence classified correctly will directly decrease the
number of β errors in the further steps. We return to
the issue of unbalanced training data. Due to the fact
that each HMM is trained independently, there is no re-
striction for equally balanced groups as long as suffi-
cient training data exists. This illustrates once again the
usability of HMM for classification.

Picture 3: The test arrangement

Prediction After a sequence o passed the classifier and
was labeled ”HR”, a prediction model consisting of one
HMM λP generates a forecast based on the characteris-
tic of o. Having the four issues of Section 3 solved, it is
easy to give a first one-day forecast from day t to day t
+ 1. From the time series of signals observed for each
patient, the probability of the hidden state at t being i
can be calculated. Knowing the (hidden) transition
probabilities aij the probabilities for each hidden state
at t + 1 can be calculated, which can be transformed in-

to the probabilities for the observed emission at t + 1.
Onset of pneumonia is forecasted, if the probability for
reaching hidden state ”red” or observed emission ”CPIS
> 6” exceeds a threshold, i.e. 

– P(”red”, t + 1) > CF2 or
– P(”CP IS > 6”, t + 1) > CF2’

More sophisticated rules can be formed such as:
P(”red”, t + 1) > CF2”P (x, t + 1) or for all other hidden
states x and a relative threshold of CF2

We shall limit our discussion in this paper to the first
case. The system could in principle be extended to give
forecasts beyond t + 1. Given incubation times of two or
three days for the case of pneumonia, this seems futile
effort for the case of this disease, but is interesting from
the general perspective. Summing up, we define a com-
plex model κ = κ(λC , λN , λP , CF1, CF2) containing all
sub models and parameters. To finally measure the pro-
jection quality we split the whole dataset into a training
set and a test set. The training set was used to train the
classification models and the prediction model using
the Baum-Welch algorithm. The system processed the
test set and the prediction results could be compared
with the real data2 not known by the system. According
to Picture 3 the whole process works as follows:

1. First of all, the system trims a test sequence o with
the length T, leaving the pre-onset phase (o* with
length T*). Time series with a pre-onset length ≤ 3
have been ignored due to a missing significance of
short time series.

2. Clearly a decision support system shall not only
predict the reaction day of pneumonia but also
avoid false predictions before that day and in gen-
eral for cases without pneumonia. A single pneu-
monia time series thus also provides snippets (o*1,
.., o*T* – 2) taken from times before the onset that
should in turn be correctly identified as ”no reac-
tion day” series (reloop o* to step 1).

3. Classification for ”HR” and ”LR”. If sequence is
tagged ”HR”, proceed with prediction. At this
point additional methods and models, as men-
tioned before, may be plugged in.

4. Predict the next state according λP and CF2.
5. Compare the predicted state with real state.

Tuning the system To finally run forecasts, the model
faces another crucial question:
How shall Errors be treated correctly to gain an opti-
mal result? The model has to predict a pneumonia at
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the right time and avoid a false alarm before that point
in time simultaneously, reflecting the α and β errors.
Parameters CF1 and CF2 are the fundamental design
parameters that may be tuned for ”optimal” perform-
ance. A fundamental trade off may be seen between
three types of errors:

–  Error Class 1 - false negatives: The system has
failed to identify the reaction day.

–  Error Class 2 - false positives 1: The system has
identified a reaction day for a pneunomic patient
at the wrong point in time.

–  Error Class 3 - false positives 2: The system has iden-
tified a reaction day for a non-pneunomic patient.

Medical practice will rank class 1-errors more serious
than class 3 and both far more serious than class 2. In
clinical terms, some class 3-errors might not even be re-
garded as ill-classified, as the distinction between pne-
unomia and other forms of pulmonary diseases such as
severe bronchitis is blurred and the boundary defined
by CPIS ≥ 6 is in reality a fuzzy one. In order to solve
this problem we already introduced the two parameters
(CF1) and (CF2). CF1 and CF2 can now be used to, for
example, shift the arrangement to a more ”false nega-
tive avoiding” behavior, paid with an increasing number
of unnecessary treatments what is regarded less of a
problem here. Now two possible ways in defining CF1

and CF2 exist, as a first solution, the treating physician
may define the two parameters as a fixed constant. The
disadvantage of this method is that a black-box like
defining of the parameters is very abstract and not intu-
itive as the consequences are not obvious immediately.
The other possibility is to optimize the parameters ac-
cording to the given training data to get the best suc-
cess-error relation. Therefore an optimal error-success
relation has to be first operationalized. To solve this
problem we introduce a target function F = F (CF1,
CF2) in which 3 different quality functions have to be
weighted to meet the user’s pretensions:

–  Quality function QF1, representing the percentage
of correct predicted reaction days on conditions:
model κ and values CF1 and CF2.

–  Quality function QF2, representing the percentage
of false predicted reaction days for cases with
pneumonia on conditions: κ, CF1, CF2.

–  Quality function QF3, representing the percentage
of false predicted reaction days for cases without
pneumonia on conditions: κ, CF1, CF2.

It is clear that all quality functions directly depend on the
choice of CF1 and CF2. For instance, if CF1 is set to 1, a
classification to ”HR” is virtually never accepted and

therefore the reaction day will be hardly predicted. On
the other hand no false prediction will occur.
Additionally 3 parameters P1, P2 and P3 are added to the
target function to penalize the 3 quality functions if their
values do not reach a minimum level. This can be used to
set lower bounds for the arrangement’s accuracy.3

(2)

The target function F reflects the trade-off in having
many predicted reaction days paid with many false pre-
dictions on the other hand. Now F provides an easy
way to operationalize the user’s needs in defining one’s
requirements. In a verbal expression a user may define:
”The system has to identify at least 40% of all reaction
days (P1) and the correct prediction of reaction days
(QF1 and w1) is twice as important as the avoidance of
false predictions for non-pneumonic patients (QF3 and
w3)”. In this case, for instance, it makes sense to weight
the avoidance of error class 1 (w1 for QF1) higher in or-
der to prevent a missed treatment. With the definition
of the weights w1,.., w3 the target function F delivers a
definite target value for every combination of CF1 and
CF2. Thus, the system can produce scalar optimal com-
binations of CF1 and CF2 according to the definitions
of the weights. The definition of the weights for every
parameter cannot be investigated in this paper as it is a
complex medical decision. Instead of presenting one
optimal solution we will demonstrate the error/success
relation for any parameter setting and some exempla-
ry results.

6. Experimental results 

Picture 4 illuminates the effect of ? and ? error as it con-
fronts the number of correct predicted reaction days
and the number of falsely predicted reaction days (in
the group of cases without pneumonia) depending on
the value combination of CF1 and CF2. Obviously the
shape shows a certain correlation which mirrors the α –
β error trade off. With a decreasing number of correct-
ly predicted reaction days, the number of false predict-
ed reaction days decreases as well. Nonetheless, the
shapes show differences which allow an adjustment of
these two parameters. Especially the range of low val-
ues of CF2 showed a dramatically increase in errors go-
ing along with a more or less stable number of correct
predictions.

3 e.g. penalizing a result with to much failed predictions
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Table 2 depicts the results in every error class. In the
first section we show how the system could decide
whether a time-series belongs to a case with or without
pneumonia based on different training methods. With a
true positive rate around 82-83% the system is able to
mark time-series as pneumonic or non-pneumonic. In
the second section we used a set of 3 different weight
settings to point out the mode of operation of our mod-
el in the α-β error trade off. As weight setting 3 (from
an actual physician) exemplifies an increase of reaction
day forecast, accuracy may be sacrificed in favor of a re-
duction of type 3 errors. As a reference we used two
naive forecast strategies to compare the results. The

first naive method predicts a reaction day in t + 1 if a
CPIS value of ”5” is reached in t. The second naive
method computes the slope of the time series based on
the values of t and t – 1. As seen in Table 2 naive
method 1 is in fact a rather powerful forecast that has
strongly influenced the way the CPIS score is construct-
ed. It is an advantage of our method that (through the
choice of threshold CF1 and CF2) the value of α can be
adjusted, which will also determine β (vice versa). The
method moreover shows, that an adjustment of α er-
rors is possible with simultaneously having a remark-
able stable β error. The concrete trade off between the
two types of errors may thus be explored.
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Picture 4: Optimization surfaces of QF3 and QF1

Classification model 
Training method  Cases with 

pneumonia (N=79) 
Cases without 
pneumonia (N=285) 

Standard Baum-
Welch Training 

 82% 69.8% 

Enhanced Training 
(Genetic Algorithm) 

 83% 73.5% 

    
Overall results 
Method Reaction Day 

correctly predicted 
Error class 2: 
Reaction  day was 
predicted too early 

Error class 3: 
Reaction day way 
predicted wrongly 

κ, Weight setting 1 41.6% 6.9% 6.5% 
κ, Weight setting 2 63.8% 11.6% 9.3% 
κ, Weight setting 3 43.2% 20.1% 6.5% 
Trivial method 1 
(y5, t → y6, t + 1) 

44.3% 21.7% 13.8% 

Trivial Method 2 
(Slope) 

31.6% 15.2% 10.4% 

Table 2: Experimental results
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Summary

The test arrangement introduced in this work can be
understood as a novel approach for processing and pre-
dicting medical data. However, the present research is
a fist attempt to analyze pneumonia using HMM and
has some limitations. The computations are based on a
two years dataset with 79 (cases with pneumonia) and
285 (cases without pneumonia) time series only and
should be tested with data from other years to evaluate
the quality. Furthermore the data belongs to one ICU
and it is not clear if the results could suffer from local
effects and if other ICUs may show different results. In
order to predict a VAP we concentrated on processing
time series of cases with pneumonia. Reckoning the
classification model, there is no subsequent processing
for sequences marked with ”LR” at this point. In order
to deploy a holistic system, further work at this point is
needed. Furthermore the implications that leaded to
the structure of the HMM (Number of states etc.) may
be questioned and examined closer. The target function
used to deliver an optimal result may be extended in or-
der to consider economic issues like concrete cost rates
for medication. Another benefit of this investigation is
to corroborate knowledge on pneumonia disease.
According to our results, the assumption of a short in-
cubation time of pneumonia could be confirmed. On
the other hand, the results reveal some limitations.
Regarding the CPIS frame rate of one day, a prediction
is strongly limited within this context. A higher frame
rate would be helpful. Furthermore the system was
based on an elaborate data preprocessing of two years
data. Unfortunately this data is still quite insufficient
due to the problems mentioned in Section 2. Hence, an
integrated early warning system must be based upon a
holistic a priori embedding in the hospital’s real time
data infrastructure. If not already realized, the pre-use
phase will demand a lot of resources. The installation of
such a system is both time consuming and costly but
warranted by its multiple uses. If such systems do exist,
the pneumonia forecast itself drains very little re-
sources in daily operations. It can and should be incor-
porated into a patient’s ”one paper” that gives an
overview of the patient’s disease history which is a
handy tool for treating physicians. Extensions in sever-
al points are evident. The system could be evaluated
with other diseases with a higher incubation time. In the
classification level other methods like Bayesian net-
works could be implemented. As other concepts of pre-
disposition revealed high potential (Oroszi, 2008), fur-
ther a priori methods should be explored, e.g. SEM.
Within the framework of the stacked architecture of
our system this can be easily achieved.

In conclusion, we have shown that data mining methods
offer a high potential approach in disclosing a signifi-
cant benefit in stored medical data. Apparently a fully
automated ”out-of-the-box” solution will not deliver.
Nonetheless, the system demonstrates how a stacked
use of different methods enriches the disclosing of po-
tentials, hidden in stored data.
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